

Disclaimer

This presentation is not and under no circumstances to be construed as a solicitation, offer, or recommendation, to buy or sell securities issued by Kinarus Therapeutics Holding AG. Kinarus Therapeutics Holding AG makes no representation (either express or implied) that information and opinions expressed in this presentation are accurate, complete or up to date. Kinarus Therapeutics Holdings AG disclaims, without limitation, all liability for any loss or damage of any kind, including any direct, indirect or consequential damages, which might be incurred in connection with the information contained in this presentation.

This presentation expressly or implicitly contains certain forward-looking statements concerning Kinarus Therapeutics Holdings AG and its business. Certain of these forward-looking statements can be identified by the use of forward-looking terminology or by discussions of strategy, plans or intentions. Such statements involve certain known and unknown risks, uncertainties and other factors, which could cause the actual results, financial condition, performance or achievements of Kinarus Therapeutics Holdings AG to be materially different from any expected results, performance or achievements expressed or implied by such forward-looking statements. There can be no guarantee that any of the research and/or development projects described will succeed or that any news products or indications will be brought to market. Similarly, there can be no guarantee that Kinarus Therapeutics Holdings or any future product or indication will achieve any particular level of revenue. In particular, management's expectations could be affected by, among other things, uncertainties involved in the development of new pharmaceutical products, including unexpected preclinical and clinical trial results; unexpected regulatory actions or delays or government regulation generally; the Kinarus Therapeutics Holding AG's ability to obtain or maintain patent or other proprietary intellectual property protection; competition in general; government, industry, and general public pricing and other political pressures. Kinarus Therapeutics Holding AG is providing the information in this presentation as of the date of the publication and does not undertake any obligation to update any forward-looking statements contained herein as a result of new information, future events or otherwise.

Overview

- Kinarus Therapeutics Holding AG
 - Headquarters: Basel, Switzerland
 - Six Swiss Exchange: KNRS
 - Shares outstanding: 1.07 BN
 - Cash: CHF8.8 M*
 - Debt: CHF7.8 M*
 - Market cap: CHF36.4 M
 - Avg daily trading volume: 4.2 M
- Major Shareholders
 - Management & Board: 20.3%
 - Public free float: 52.4%

*as of 31 Dec 2021

- Phase 2 asset: KIN001
 - New drug combination
 - Pamapimod in-licensed from Roche (Phase 2)
 - Pioglitazone (marketed generic)
 - Combo is synergistic & addresses issues
 - Indications for value creation
 - AMD
 - IPF
 - Covid-19
- Strategy
 - In-license clinical-stage drug-candidates
 - Develop to proof of concept
 - Exit

Experienced Leadership We are drug developers

Dr. Alexander BauschChief Executive Officer

strekin

Dr. Matthew WrightChief Operations Officer
Head of Research

strekin

Dr. Thierry FumeauxChief Medical Officer

Claudia Berger Chief Clinical Dev. Officer

Subhasis Roy Interim CFO

- Direct know-how and in-depth expertise with Kinarus' therapeutic targets and disease indications
- Established relationships with leading experts in clinical development

Scientific and Clinical Advisors

Dr. Viktor Boerlin Chief Medical Advisor

SANDOZ

U NOVARTIS

Roche

strekin

Age-Related Macular Degeneration (AMD)

Prof. Dr. Hendrik Scholl

Director, Institute of Molecular and Clinical Ophthalmology Basel (IOB)

Professor and Chairman of the Department of Ophthalmology, University of Basel, Switzerland

Chair of the European Vision Institute EEIG, the European Alliance for the Promotion of Vision Research and Ophthalmology

Prof. Dr. Christian Prünte

Head of Clinical Trials Platform Institute of Molecular and Clinical Ophthalmology Basel (IOB)

Professor and Clinical Chairman of the Department of Ophthalmology, University of Basel, Switzerland

Dr. Bianca Gerendas

Managing Director Vienna Read Center, Vienna, Austria

Associate Director, Christian Doppler Laboratory of Ophthalmic Image Analysis

Idiopathic Pulmonary Fibrosis (IPF) Katrin Hostettler MD, PhD

Head of Dept., Pulmonology University Hospital Basel

Board of Directors

Dr. Hari Kumar, Ph.D. Chairman

Dr. Kumar served at Eisai as European Marketing Director, and Roche as Global Head of Transplant Immunosuppressives.

He moved to Amira Pharmaceuticals in 2007 as Chief Business Officer., and to Adheron Therapeutics as Chief Executive Officer.

At Amira, Dr. Kumar led the process that resulted in its acquisition by Bristol Myers Squibb in 2011. He also navigated the acquisition of Adheron Therapeutics by Roche, in his roles both as CEO and board member.

These transactions have delivered over a billion dollars in returns to investors.

Dr. Alexander Bausch, Ph.D., MTE (IMD)

Dr. Bausch has extensive commercial, development, and executive leadership expertise from a 20-year career in the pharmaceutical industry.

At Hoffmann La Roche, Dr. Bausch led research and development teams across seven therapeutic areas,

and served as life cycle leader for a global phase 3 program (Bitopertin) where he developed the strategic roadmap for commercialization up to product launch.

Prior to founding Kinarus, he worked as an independent consultant supporting venture capital funds and small biotech companies.

Eugene Tierney

Mr. Tierney served as Head of Global Pharma Business Strategy at F. Hoffmann-La Roche and Therapeutic Area Head for anti-infectives & transplantation.

Mr Tierney held several affiliate sales & marketing roles of increasing seniority, including Country Manager for Genentech in the UK & Ireland.

held 450-employee company.

Dr. Silvio Inderbitzin, Ph.D., MBA

Dr. Inderbitzin has held multiple senior positions in the pharmaceutical industry.

At Spirig Pharma, he was Head of Quality Assurance and served on the corporate management team, ultimately joining the Board of Directors and becoming co-owner of the privately-

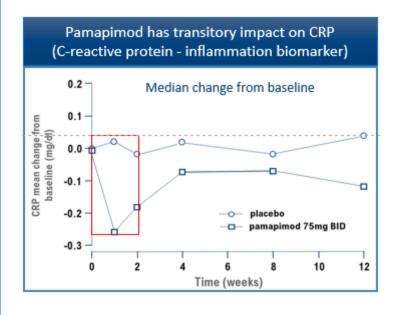
Prior to the successful sale of the company to Galderma, he served as CEO and was responsible for its foreign subsidiaries.

Business strategy Aligned with competencies

- In-license drug-candidates with a history of safety and activity in human clinical testing
 - Right drug, wrong indication
 - Limitations we can fix through innovation
- Leverage new knowledge
 - Findings specific to disease indication(s)
 - Findings specific to the molecule's mechanism of action
- Kinarus develops to clinical proof of concept, creates value & exits
 - License out
 - Trade sale
- Proven business model with many examples in biotech space

Pamapimod – Exemplifies Kinarus Strategy Clinical-stage p38 MAPK inhibitor in-licensed from Roche

The Asset

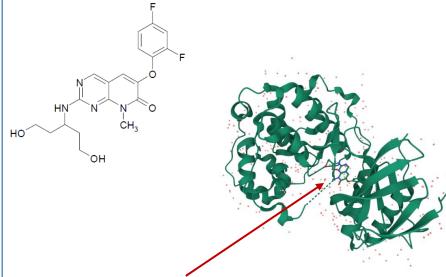

- p38 MAPK inhibitors were intensely studied by big pharma between
 2005-2010 to treat inflammatory diseases (e.g. Rheumatoid Arthritis)
- Pamapimod was initially discovered and developed by Roche
 - ✓ Shown to be safe in preclinical and clinical testing
 - ✓ Engages with target and showed acute efficacy

The Problem

- Relatively short-lived efficacy (see graph)
 - Body has compensatory mechanisms that neutralize pamapimod
 - Clinical efficacy muted after 2 weeks
- Roche discontinued pamapimod development 2007

The Kinarus Solution

- Pamapimod + pioglitazone = KIN001
 - ✓ Pioglitazone neutralizes compensatory mechanisms
 - ✓ Prolonged pamapimod's efficacy without compromising safety
 - ✓ Novel intellectual property
- KIN001 is Phase 2-ready patent protected innovative drug that can capture the value promised by the original p38 MAPK inhibitors



Diamond in the Rough

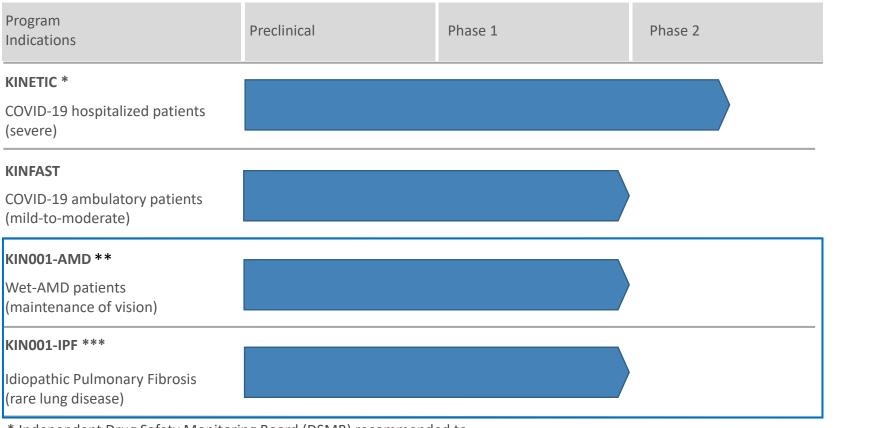
- Pamapimod is a high quality p38 MAPK inhibitor
 - Discovered and optimized by Roche
- Roche completed 10 clinical studies of Pamapimod, including two large Phase 2 studies in Rheumatoid Arthritis
 - o Investment of approx. CHF 100 M by Roche
 - High quality big pharma asset
 - Excellent safety data package
- Kinarus obtained
 - Exclusive license and global rights
 - Phase 3 GMP supply of 500 kg API
 - Exclusive use of all clinical, CMC, preclinical data and regulatory documents
- Roche is eligible for
 - Low-to-mid single digit royalty
 - Low-to-mid double digit milestone payments
 - o Right of first negotiation after first Phase 2 data

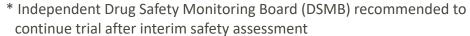
Pamapimod

Optimized through structure-based design

- Blocks the catalytic site
- Highly potent and selective against p38 MAPKα

p38 Isoform selectivity of pamapimod


Preactivated recombinant p38 isoforms were assayed for activity by ³³P incorporation into myelin basic protein substrate in the presence of varying concentrations of pamapimod as described.


	$\mathrm{IC}_{50}{}^{*}$	$\mathrm{IC}_{75}^{}^{*}$
	μ	M
$p38\alpha$	0.014 ± 0.002	0.098 ± 0.014
р38β	0.48 ± 0.04	3.32 ± 2.0
p38γ	>100	>100
р38δ	>100	>100

* IC50 and IC75 values are expressed ± S.E.M.

Hill RJ et al. JPET 2008 Pamapimod, a Novel p38 Mitogen-Activated Protein Kinase Inhibitor Preclinical Analysis of Efficacy and Selectivity

KIN001 Has Broad Potential Our focus: wAMD & IPF

^{**} Trial initiation contingent upon financing

^{***} Trial initiation contingent upon interim results of KINETIC Covid-19 trial

Roche's preclinical and clinical development enables direct start of Phase 2 in Kinarus indications

COVID-19

Wet AMD

Clinical Status & Expected Milestones

Strategic

Wet Age-Related Macular Degeneration (wAMD) & Idiopathic Pulmonary Fibrosis (IPF)

- wAMD Phase 2 trial
 - 12 month 100-patient randomized placebo-controlled
 - Initiation authorized in Switzerland and Germany
 - o Top-line data about 24 months after initiation
- IPF Phase 2 trial
 - 12-month 75-patient randomized placebo-controlled study in preparation
 - o Top-line data about 26 months after initiation

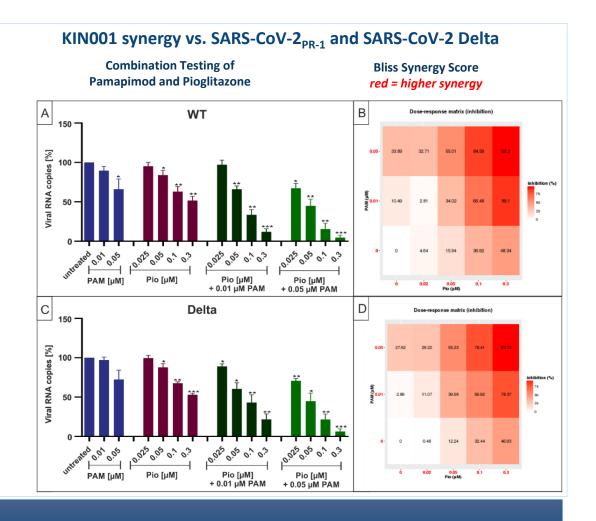
Opportunistic

COVID-19 (partly funded by Swiss government*)

- Phase 2 study progressing in hospitalized COVID-19 patients
 - Initiated in DE, RUS, ROM, POL, BUL, ARG
 - Interim data: late 3Q 2022
 - Top-line data expected: 2023 (dependent on interim data)
- Phase 2b study in mild-to-moderate COVID-19 patients
 - o Trial initiation 3Q 2022, authorized in CH and DE

*Up to CHF 7 M grant from Swiss Federal Office of Public Health Program for COVID Medicines

KIN001 Synergistic Antiviral Activity Against SARS-CoV-2 and Variants of Concern*



Pamapimod Alpha IC 50 ≈ 250 nM IC 90 ≈ 3 μM IC 90 ≈ 3 μM IC 90 ≈ 3 μM IC 90 ≈ 15 μM Alpha IC 90 ≈ 15 μM IC 90 ≈ 15 μM

Table 1. IC50 and IC90 values of PAM and Pio against SARS-CoV-2 Wuhan type and all VoCs in Calu-3 cells.

	PAM		Pio	
	IC ₅₀	IC90	IC ₅₀	IC ₉₀
<mark>Wuhan Type</mark>	≈100 nM	≈3 µM	≈800 nM	≈10 µM
Alpha	≈250 nM	≈3 µM	≈800 nM	≈15 µM
Beta	≈250 nM	≈3 µM	≈900 nM	≈15 µM
Gamma	≈250 nM	≈3 µM	≈700 nM	≈15 µM
Delta	≈250 nM	≈4 µM	≈500 nM	≈12 µM
Omicron	≈250 nM	≈3 µM	≈700 nM	≈12 µM

In comparison, the published IC₅₀ and IC₉₀ values for <u>Remdesivir</u> are: 600 nM and 1.28 μ M in Calu-3,cells; 1.49 μ M and 3 μ M in Vero E6 cells.

In vitro cell models

- High antiviral potency of both pamapimod and pioglitazone against SARS-CoV-2 comparable to remdesivir
- Similar potency across all tested variants of concern (alpha, beta, gamma, delta, omicron)
- KIN001 combination is synergistic; i.e., greater efficacy of PAM/Pio in combination vs. the sum of the activity of the single drugs

KIN001 for all stages of COVID-19 Three angles of attack + easy distribution

- Anti-viral activity has potential to reduce virus load, disease severity, and transmission risk
- Anti-inflammatory action can potentially prevent cytokine storm
- Anti-fibrotic action may prevent long-term consequences on heart, lung and nervous system
- ❖ KIN001 is an oral small molecule treatment facilitating stockpiling and broad availability

"take KIN001 and call me in

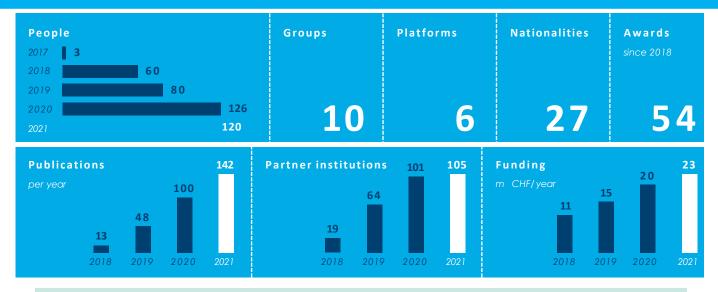
the morning..."

- ✓ Convenient out-patient self-administration
- ✓ Long shelf-life
- ✓ No cold storage
- ✓ Easy scale-up manufacturing and distribution via traditional pharma networks
- ✓ Characteristics facilitate broad access (unlike antibodies)
- ✓ Reduces transmission risk

Opportunistic Covid-19 trials Supported by non-dilutive financing

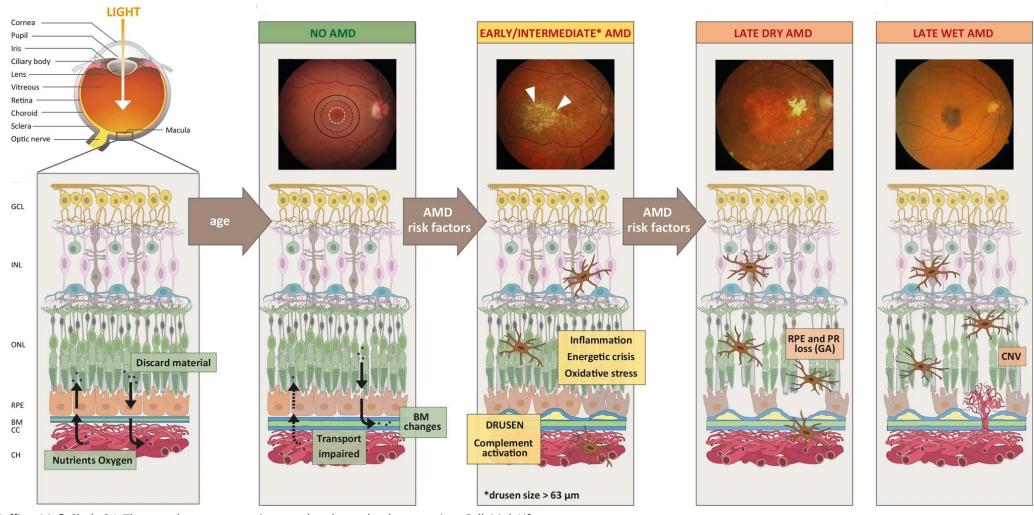
- Ongoing: KINETIC Trial Treat <u>hospitalized COVID-19 patients</u> to improve outcomes in a Phase 2 randomized placebo-controlled trial
 - KIN001 vs. standard of care (i.e., anti-viral or anti-inflammatory drugs)
 - 4-week treatment with 8-week follow up assessment
 - Interim analysis (131 patients): late Q3 2022
 - o Endpoints: Intubation, death, respiratory support-free days
- Initiation pending: KINFAST Trial Treat mild-to-moderate COVID-19 patients to reduce duration and severity of symptoms in a Phase 2 randomized placebo-controlled trial
 - Swissmedic and Ethics Committee approvals in Switzerland have been obtained
 - Trial to include: 430 patients for a treatment period of 2 weeks
 - Endpoints: FDA patient reported outcome questionnaire

Working hand in hand, IOB's molecular and clinical teams have championed projects that deepen our understanding of the biology of vision and bring us closer to novel diagnostic tools and treatments for eye diseases.


IOB CLINICAL RESEARCH CENTER

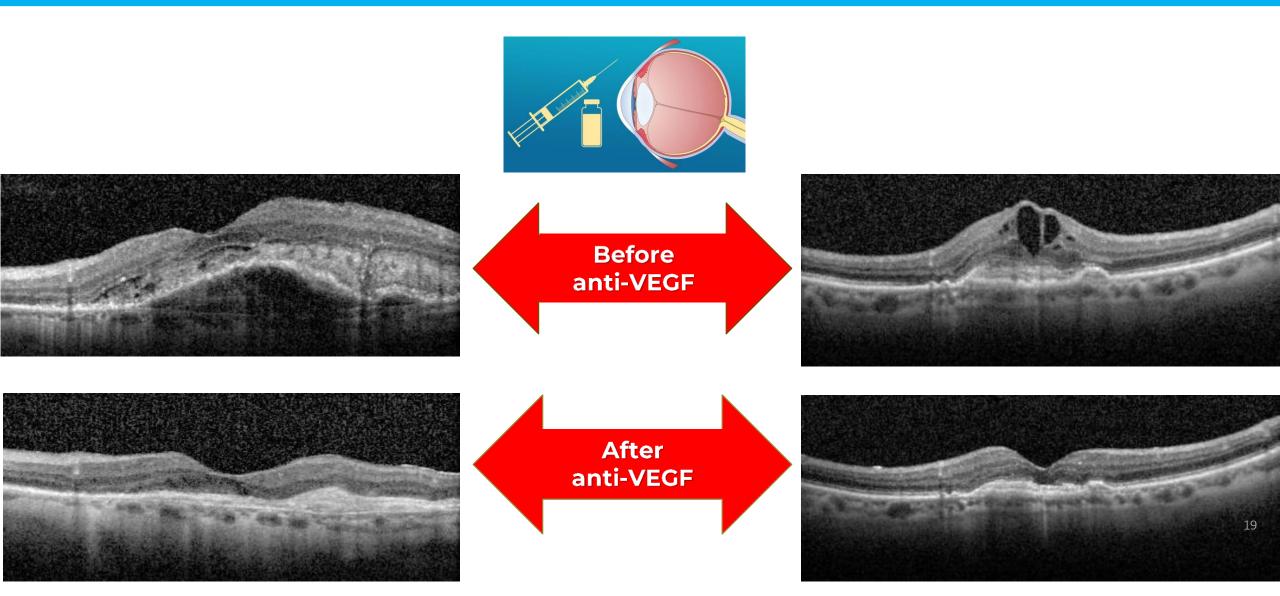
PLATFORM LEADERS
Christian Prünte Hendrik Scholl

IOB in Numbers Research and Clinical Groups


MOLECULAR CLINICAL Central Visual Circuits Group) Ophthalmic Genetics Group 10 Groups > Human Retinal Circuits Group) Ophthalmic Imaging & OCT Group › Ophthalmic Translational Research Group > Theoretical & Computational Neuroscience Group) Myopia Research Group > Quantitative Visual Physiology Group) Genetic Epidemiology Visual Cortex Plasticity Group of Ophthalmic Diseases Group > Human Organoid Platform Clinical Trial Center Platform 6 Platforms Complex Viruses Platform Visual Neurophysiology Platform Single-Cell Genomics Platform Scientific Computing Platform

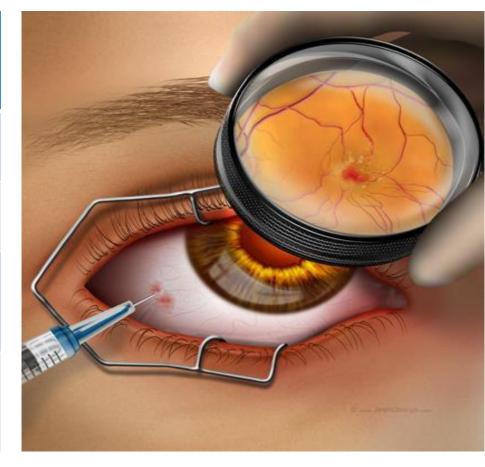
Exudative Retinal Diseases

	Avg age of onset	Prevalence* (MM)	Disease overview	
Wet AMD	70 yrs	1.9	A leading cause of blindness in the elderly	
Diabetic Macular Edema	60 yrs	1.9	Most frequent cause of blindness in middle aged adults	
Retinal Vein Occlusion	55 yrs	2.5	Second most common cause of vision loss due to vascular disease	
Diabetic Retinopathy w/o DME	45-50 yrs	5.1	Common cause of vision loss among diabetics classified as NPDR vs PDR	

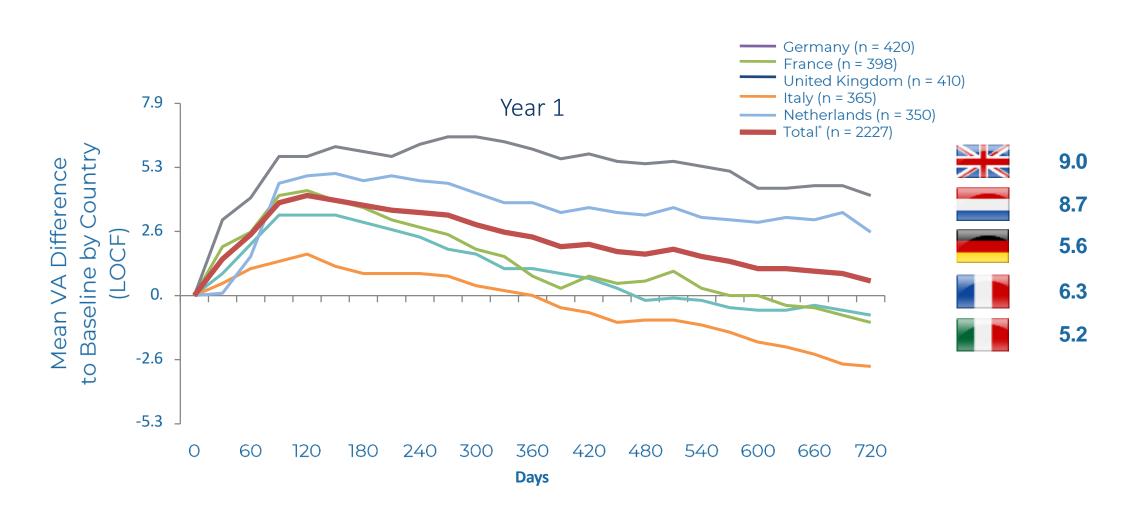

wAMD = wet AMD; DME = Diabetic Macular Edema; BRVO = Branch Retinal Vein Occlusion; CRVO = Central Retinal Vein Occlusion; NPDR = Non-Proliferative Diabetic Retinopathy; PDR = Proliferative Diabetic Retinopathy; Source: epidemiology data based on multiple literature sources, diagnosis rates based on Datamonitor Report, DRG Market Forecast Assumptions; other sources: Regeneron USA: 230k anti-VEGF treated patients, Roche USA: 200k patients under ophtha care https://www.gene.com/stories/retinal-diseases-fact-sheet_and DRG Market Forecast Assumptions; *US, EUS, Japan

Development of Wet Macular Degeneration

Armento, A., Ueffing, M. & Clark, S.J. The complement system in age-related macular degeneration. *Cell. Mol. Life Sci.* **78**, 4487–4505 (2021). https://creativecommons.org/licenses/by/4.0/


Current Neovascular AMD Treatment Intravitreal VEGF Inhibition

Real World Data


Most Patients With Wet AMD Receive ~5 Injections per Year

	Study Population	Injection Duration, Year	Mean Injection Rate
Medicare analysis ¹	459,237	1	4.3
LUMINOUS ²	4,437	1	4.3-5.5
Retrospective claims analysis ³	11,688	1	4.5-6.8
Retrospective claims analysis ⁴	53,621	1	4.6-6.9

- 1. Lad EM, et al. Am J Ophthalmol. 2014;158(3):537-543.e2.
- 2. Holz FG, et al. *Br J Ophthalmol*. 2013;97(9):1161-1167.
- 3. Kiss S, et al. Ophthalmic Surg Lasers Imaging Retina. 2014;45(4):285-291.
- 4. Holekamp NM, et al. Am J Ophthalmol. 2014;157(4):825-833.e1.

Real World Use of anti-VEGF Therapy is Associated with Poorer Visual Outcomes Compared to the Clinical Trial Setting

^{*}Only countries meeting or exceeding enrollment target (n = 444) were included.

Current anti-VEGF Therapies are Minimally Differentiated and do not Adequately Address Key Unmet Needs

Off-label use	Approved
Oli-label use	/ ippi o rou

Current anti-VEGF therapies

performance:

				injection
Approved indications	Off-label use in wAMD, RVO, and DME	WAMD RVO PDR & NPDR DME	WAMD RVO NPDR DME	wAMD (10/19) RVO (2021E) DME (2022E)
Efficacy	Perceived to be broadly equivalent Lucimp		Perceived to have improved durability vs Lucentis and Avastin, and improved efficacy particularly in DME	Trial results show superior retinal fluid reduction compared to Eylea (changes in BCVA is equivalent)
Safety	Broadly equivalent safety profiles			Early safety data indicates increased inflammatory events
Labeled dosing intervals*	Q4W across indications		wAMD: 3 monthly loading, followed by Q8W or Q4W RVO: Q4W DME: 5 monthly loading, followed by Q8W DR: 5 monthly loading, followed by Q8W	wAMD: 3 monthly loading, followed by Q8W^ or Q12W RVO: 6 monthly loading, followed by PRN DME: 5 monthly loading, followed by PRN
Physician perception of Less				

favorable

Note: * Based on U.S. label; EU labels may indicate a dose and extend approach; Dosages delivered in 0.05 mL

[^] Patients in Brolucizumab's Hawk and Harrrier study were interval adjusted to Q8W if disease was present at Q12W

Source: Company websites, National Eye Institute, Package inserts, Cowen Therapeutic Categories Outlook 2019, Klufas et. al (2018), Dugel et. al (2019), Clinicaltrials.gov

Extending Anti-VEGF Durability New anti-VEGF Injectable Agents – Limited Success

Brolucizumab (Beovu®)

- recent approval, concern over the inflammatory profile of the drug, with intraocular inflammation, such as retinal vasculitis and retinal occlusive vasculitis, occurring in some patients

Faricimab (Vabysmo®)

- recent FDA and Swissmedic approval, bispecific targets both VEGF and angiopoietin 2 (ANG2)

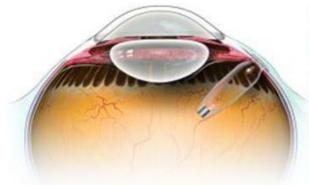
Abicipar*

- high ocular inflammation, not accepted by FDA

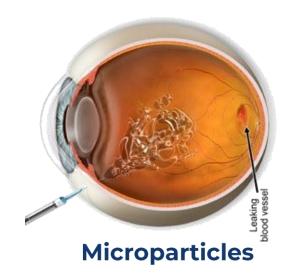
Conbercept*

- approved in China, US trials did not achieve primary endpoint

KSI-301*


- phase 2 trials in wet AMD did not demonstrate noninferiority to Eylea

^{*}Not FDA Approved


⁺Approved in China; Phase 3 in US underway

Extending Anti-VEGF Durability Other Current Approaches

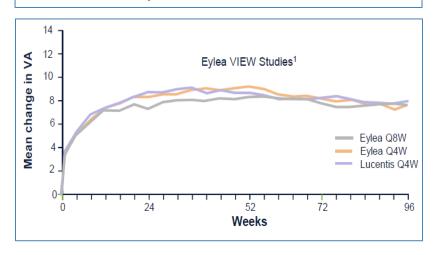
- Oral Agents
 - KIN001, AKST4290
- Sustained Release Eye Implants
- Microparticle Formulations (biodegradable polymers or hydrogels)
 - GB-102 (Sunitinib TKI)
 - Others: OTX TKI/OTX-IVT, AXT 107
- Gene Therapy

Reservoir-based Port Delivery

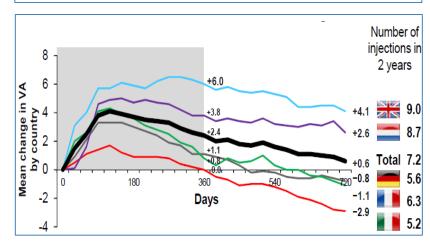
Neovascular AMD Management Room for Significant Improvement in the Future

- Individualized anti-VEGF therapy
 - Available agents: ranibizumab, aflibercept, bevacizumab
 - All require indefinite, frequent treatment/evaluations
 - Treat and Extend most common and non-inferior to monthly Rx
- Real World
 - Widespread undertreatment
 - Early detection = better vision but not less treatment
- Major unmet need = more durable anti-VEGF
 - Decreased burden for patient, caregivers, healthcare system
- Ultimate Aim
 - Better long-term visual outcomes for patients
 - Oral treatments like KIN001 might play an important role complementary to anti-VEGF treatment

Wet Age-Related Macular Degeneration KIN001: potential first oral complement to Lucentis/Eylea


- wAMD is the leading cause of blindness in older adults
- Lucentis and Eylea are blockbuster anti-VEGF drugs for wAMD
 - Both are approved to be administered every few weeks as injections directly into the eye
 - o Patients and payers want to increase time between Lucentis/Eylea injections
 - > Eye injections are burdensome for patients and caregivers
 - Costs are high (injection, office visit, diagnostics, follow-up, complications, etc.)
- Current medical practice is to evaluate progression and, if possible, delay next injections
- Value Proposition
 - KIN001 could be the first complementary oral therapy to reduce intraocular injections
 - 30% reduction in intraocular injections could be highly impactful
 - As an oral small molecule, KIN001 offers opportunities for broader access than injectables

Significant Under-use of anti-VEGF Drugs

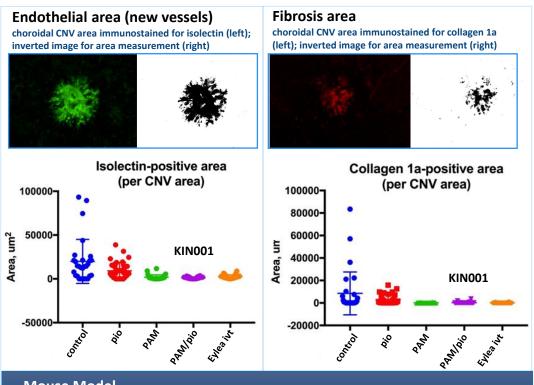


Data reported in clinical trials

In the original clinical trials, high intensity dosing of anti-VEGF drugs (Eylea, Lucentis) was maintained, halting gradual loss of vision (VA) and preventing eventual blindness

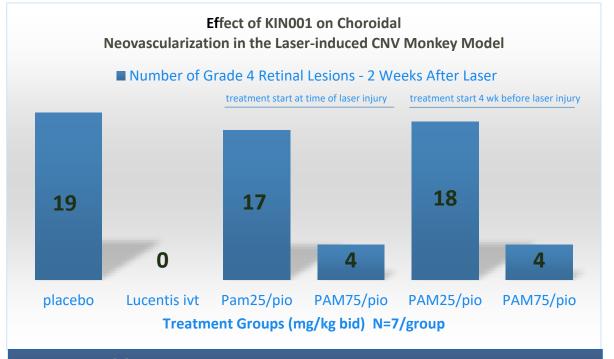
Experience in medical practice

Real word data of current clinical use shows that high intensity of dosing is not achieved (5-9 administrations over 2 years compared to a target of 13-24). This results is a gradual loss of vision over time.

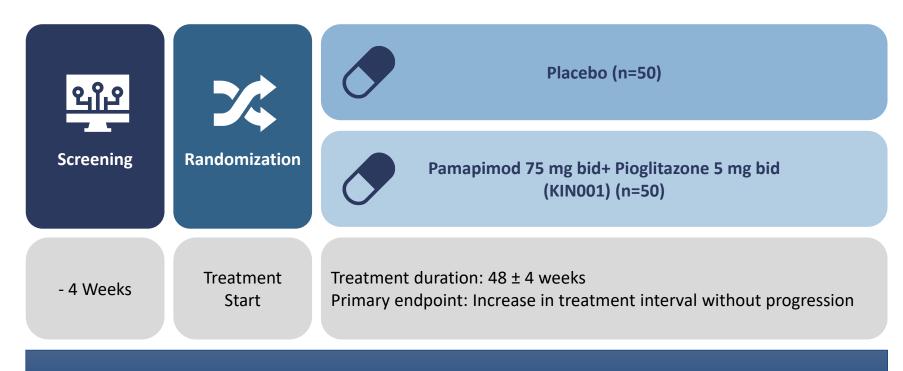

Overall lack of efficacy linked to lack of compliance (injection into the eye); cost; ease of obtaining an appointment; patient inconvenience; impact of frequent injections on caregiver burden; overall loss of efficacy with anti-VEGF drugs

¹Schmidt-Erfurth U, Kaiser PK, Korobelnik J-F, Brown DM, Chong V, Nguyen QD, et al. Intravitreal aflibercept injection for neovascular age-related macular degeneration: ninety-six-week results of the VIEW studies. Ophthalmology, 121(1).

²Holz FG, Tadayoni R, Beatty S, Berger A, Cereda MG, Cortez R, Hoyng CB, Hykin P, Staurenghi G, Heldner S, Bogumil T, Heah T, Sivaprasad S. Multi-country real-life experience of anti-vascular endothelial growth factor therapy for wet age-related macular degeneration. Br J Ophthalmol. 2015 Feb;99(2):220-6.


KIN001 Reduces Pathological Neovascularization in Mouse and Primate Models Reflecting wAMD

- Strong effect of KIN001 to reduce neovascularization of laser-induced retinal lesions in mouse CNV study
- KIN001 also reduced retinal fibrotic area
- N=10 animals per treatment group, single ivt injection of Eylea as positive control, 2 wk treatment

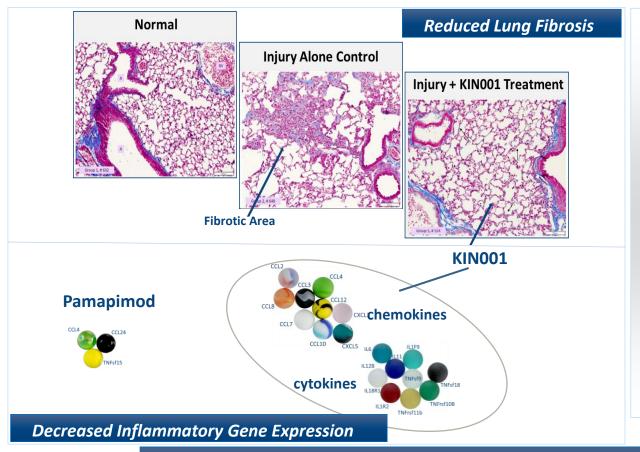

Primate Model

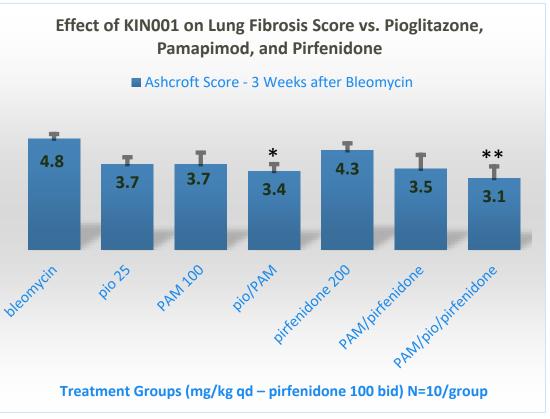
- Strong effect of KIN001 (equiv. human 75 mg dose pamapimod) to reduce CNV retinal lesion severity in Cynomolgus monkey
- Equal efficacy of KIN001 in 4 wk pretreatment and immediate treatment groups vs. time of laser injury
- Supports Kinarus hypothesis that KIN001 combination overcomes loss of efficacy over time

Complementary positioning to Lucentis and Eylea may satisfy patients and payers without changing current medical practice

KIN001 wAMD Phase 2 Trial

- Design follows "treat and extend" regimen, reflecting current treatment strategy
- Fully powered to detect a difference of 50% prolongation of time between injections
- Patients with only one diagnosed eye will preferentially be recruited. Second eye will be analyzed for reduced incidence of conversion of dry (geographic atrophy, for which there is no treatment) to wAMD
- Trial conducted under guidance of world leader in ocular diseases: Prof. Hendrik Scholl & Prof. Christian
 Prünte, Institute of Molecular and Clinical Ophthalmology, Basel


Idiopathic Pulmonary Fibrosis More effective, better tolerated therapies needed



- IPF is a rare, severe lung disease with two approved therapies
 - Esbriet® (pirfenidone; Roche) and Ofev® (nintedanib; BI) are marketed drugs
 - > Efficacy is limited
 - ➤ Significant side effects
 - Several drugs against novel targets have failed in late clinical development
 - Both components in KIN001 target key pathological mechanisms in IPF
 - ✓ fibrotic tissue remodeling
 - ✓ inflammation

KIN001 Reduces Lung Fibrosis and Inflammatory Gene Expression in IPF Mouse Lung Injury Model

Mouse Model

- Strong effect of KIN001 to reduce fibrotic tissue in <u>bleomycin lung injury</u> study
- Synergistic effect of KIN001 to broadly downregulate lung inflammatory genes
- Better efficacy of KIN001 vs. pirfenidone
- KIN001 may be used in treatment refractory IPF and as a complementary agent with pirfenidone

KIN001 IPF Phase 2 Trial

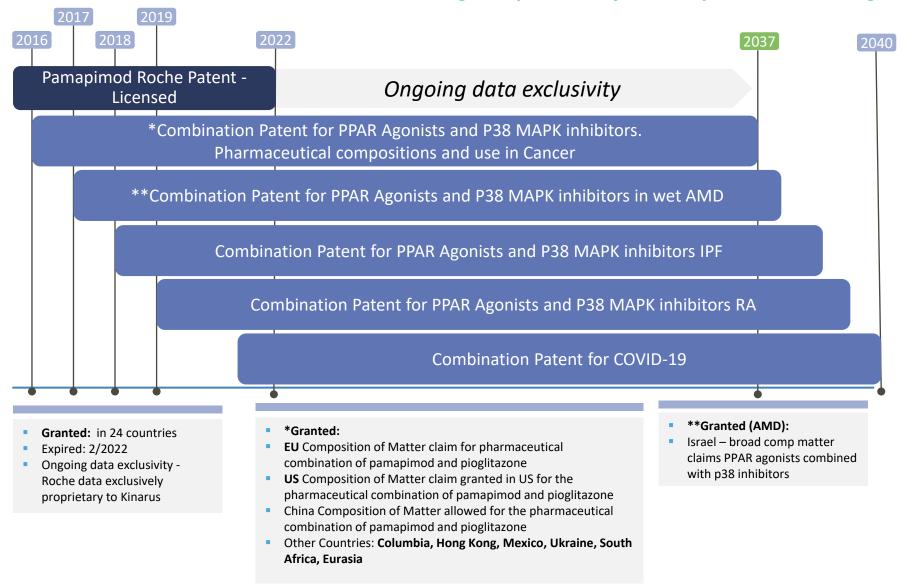
Placebo (n=25)
published placebo data
integrated into statistical model

Pamapimod 75 mg bid+ Pioglitazone 15 mg bid (n=50)

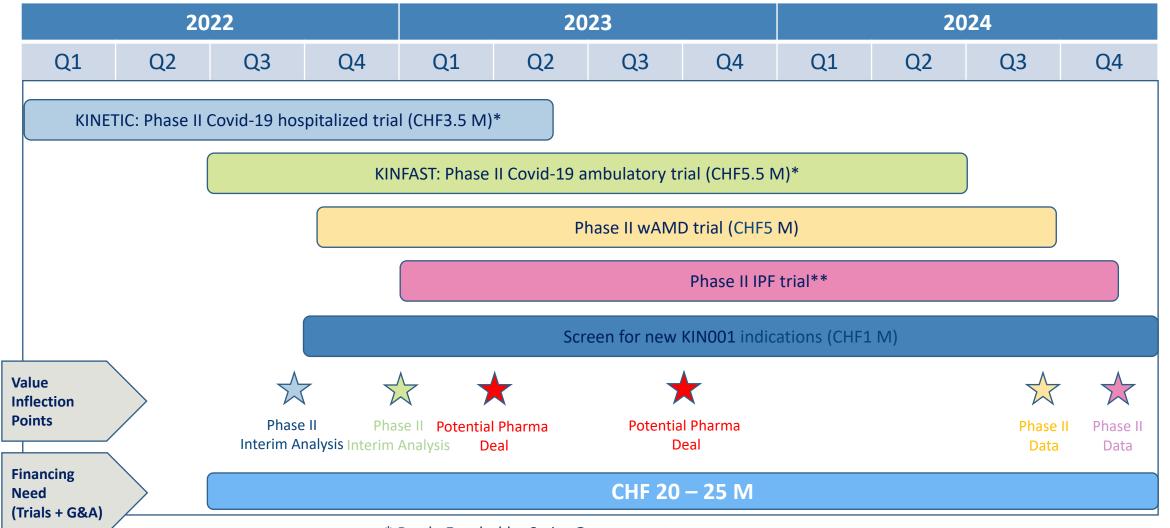
- 4 Weeks

Treatment Start Treatment duration: 52 weeks

Primary endpoint: Mean absolute change from baseline in Forced Vital


Capacity (FVC) in mL at 52 weeks

- Study in IPF patients who are: a) refractory or intolerant to standard of care (SOC); or b) in addition to standard of care
- The reduction in decline in lung capacity at 1 year is the primary endpoint (endorsed by FDA for Phase 3 outcomes)
- Trial is fully powered to show a clinically meaningful 40% reduction in forced vital capacity (FVC) decline compared to placebo
- Collaborator: Prof. Karin Hostettler, Univ. Hospital Basel



Strong Patent Estate

Strong composition of matter protection through 2037

KIN001: Development Plan, Value Inflection Points & Financing Need

^{*} Partly Funded by Swiss Government

^{**} Trial initiation contingent upon interim results of KINETIC Covid-19 trial

Kinarus – A Compelling Investment Opportunity

Contact:

Dr. Alexander Bausch Chief Executive Officer +41 61 633 2971 alexander.bausch@kinarus.com

Kinarus Therapeutics Holding AG Hochbergerstrasse 60C 4057 Basel Switzerland

kinarus

Thank you for attending Kinarus Therapeutics KOL event